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Abstract. The pionic contribution to the g — 2 of the muon involves a certain integral over the modulus
squared of Fr(t), the electromagnetic form factor of the pion. We extend techniques that use cut-plane an-
alyticity properties of Fr(¢) in order to account for present day estimates of the pionic contribution and
experimental information at a finite number of points in the spacelike region. Using data from several experi-
ments over a large kinematic range for |¢|, we find bounds on the expansion coefficients of Fr (t), sub-leading
to the charge radius. The value of one of these coefficients in chiral perturbation theory respects these
bounds. Furthermore, we present a sensitivity analysis to the inputs. A brief comparison with results in the
literature that use observables other than the g — 2 and timelike data is presented.

1 Introduction

General principles such as analyticity and unitarity have
been used to derive useful constraints on the form factors
(for a review see [1]). In particular, useful lower bounds
were obtained on the pionic contribution to the (g—2)
of the muon (muon anomaly). For recent reviews on the
current status of this quantity, see [2, 3]. Consider the fol-
lowing low-energy expansion for the pion electromagnetic
form factor Fy(¢):

2
Fw(t)=Fﬂ(0)+%t+ct2+dt3+...7 (1)

where r,; is the pion charge radius, ¢ and d are Taylor co-
efficients, with units of GeV~* and GeV %, respectively.
For a recent discussion, refer [7]. From general principles,
discussed in the next section, and using the normaliza-
tion Fr(0) =1, one immediately finds a lower bound of
~ 1.6 x 107, Imposing the experimental value of r, fur-
ther improves the bound to 2.9 x 107? [4]. Caprini [5] has
more recently shown that if one were to assume that the
pionic contribution is less than I = 75 x 10~?, then these
principles yield constraints on the higher expansion coeffi-
cients, c and d, which translate into an allowed ellipse in the
c—d plane. These results, as well as the results we present
here, hold as long as the true pionic contribution is less
than the value of I we have assumed. If the pionic contri-
bution is indeed significantly smaller, then the true allowed
region would be a proper subset of the region we isolate.
The inclusion of experimental data from the timelike
region, the phase, the modulus, and the phase as well
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as the modulus each improves the bound on the muon
anomaly [1]. Using I as input, Caprini has used disper-
sive techniques and timelike data and has considered other
physical observables such as certain QCD polarization
functions, in addition to the muon anomaly, to constrain
further the allowed regions in the ¢-d plane!. We note that
the parameter c itself has been determined to 2-loop accu-
racy in chiral perturbation theory [7], and it has a value of
4.49 GeV~*, which is safely accommodated in the allowed
ellipse of Caprini [5].

An important source of experimental information is the
values of the electromagnetic form factor in the space-
like region. These have been reported in electroproduc-
tion experiments conducted in the 1970’s [8—10]. Raina
and Singh [11] used this information to produce improved
bounds on the muon anomaly [12]. New experimental data
are now available [13—16]. In this work, we will make use of
some of the data sets above.

Our main purpose in this work is to demonstrate that
the framework of Raina and Singh can effectively be used
to obtain constraints in the c¢—d plane, using the pionic
contribution to the muon anomaly as input. This is an al-
gebraic framework, which is clear cut and transparent. It
provides an important consistency check on the allowed re-
gions isolated by Caprini.

In Sect. 2 we briefly review the dispersive formalism
and describe the implementation of spacelike constraints
and the method by which we isolate the region in the c—d
plane. Here, we provide the theoretical framework and also
a discussion on the present experimental status, as they

1 Applications to form factors in semi-leptonic decays of such
general methods in a modern context have also recently been
considered [6].
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are both required for this purpose. In Sect. 3 we present
our results using data from [8—10] and more recent data
from [15,16]. We present a detailed discussion of our re-
sults and our conclusions in Sect. 4.

2 Formalism

We recall the formalism presented in [11]. The pion contri-
bution to the muon anomaly is given by

ourm) =1 [Tl OF, @

where ¢, = 4m? is the branch point of the pion form factor
and
QQmi (t _ tﬂ_)3/2

P():WTK@)ZO» (3)

where

1 m2u2\
Kt)z/o du(l—u)u2<1—u—|— ; ) . (4)

Using the following map from the ¢-plane, which is cut from
t, along the real t axis, to the complex z-plane (region
|z] < 1):

z—1 t—tr
z+1 -1 tr (5)
and the definitions
f(z) = Fr(t), (6)
p(z) =p(t), (7)

the pionic contribution to the muon anomaly can be

written
27
au(7r+7r’):%/0 @) |f (), ®)

where
w(0) = 4m?2 sec®(0/2) tan(6/2) p (e'?) > 0. 9)

We now consider a function h(z) defined by

h(z) = f(2)wx(z), (10)
where
wa(2) = exp {i 0277 daelefj mw®)|. (1)
Then (8) can be written
a,(rtr) = 2i /Qﬂ e |n (). (12)
T Jo

Now h(z) is analytic within the unit circle |z| < 1, and
for real z, h(z) is real. Therefore h(z) can be expanded as
follows:

h(z) =ao+a1z+azz®+-- -, (13)
where ag, ay - - - are real coefficients. Therefore, in the ana-
lytic region, |z| <1, a, (77 ™) can be written as

ap(mtr ) =ad+al+--- . (14)
The expansion coefficients a,, can be obtained from a Tay-

lor expansion of the function h(z) in terms of f(z) and
wr(2). The coefficients are given by

ag = h(0) = w,(0), (15)
2
a1 = h'(0) = w’(0)+ gritﬂwn(O) ; (16)
_R"(0) 1 8 o 2
2= - w0 ( B2t 4 32t
1 , 2
t5 2w;.(0) 3 rate | +wll(0) (17)
and
h/l/ 1
3<0 == [w7r (0) (1272, — 384ct2 + 384dt2) |
1
+5 3wl ( ( —r2t.+32c t2>}
1
+ G [Zw Vr2t, +w"'(0)] (18)
In our treatment, the expansion coefficients satisfy
Z a?=1 (19)
i=0

Given I, (19) yields constraints on the expansion coeffi-
cients of the form factor. Including up to the second (third)
derivative for Fy;(t) results in constraints for ¢ (c and d). It
may be pointed out that Caprini’s result on ¢ and d shown
in Fig. 1 (dashed lines) of [5] is obtained precisely in this
manner.

The constraints on the expansion coefficients of interest
may be significantly improved through the inclusion of ex-
perimental information on the form factor. Our objective
in this work is to study the effect of including experimental
information coming from the spacelike region. In order to
meet this objective, we first extend the formalism that has
been presented in [11]. In that work, spacelike constraints
were used to obtain lower bounds on the muon anomaly,
denoted as Iiniy.-

We observe that IV spacelike constraints are linear con-
straints that may be expressed as

o0
2 : (n)
= a;c; *,
=0

wheren =1,2,--- N. Such constraints can be implemented
through the technique of Lagrange multipliers, by setting

(20)
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up the Lagrangian

) N e
L= %Za?wLZan(An—Zaicgn))» (21)
i=0 n=1 i=0

where in (21), we consider only a finite number of expan-
sion coefficients. The Lagrange equations yield

N
a; = Z ancgn) (22)
n=1
and
N [e's)
I = Z o Z aicgn) (23)
n=1 1=0
It then follows that
N
Imm = Z anAn ) (24)
n=1
where
N [e's)
A, = Z m Z cgm)c(n) (25)

All the o, may be eliminated to yield a determinantal
equation for I:

I Ay Ay
Ay chl)c(-l) Zc(l)c(z)

A Yo TP 2.

For the case at hand, where we wish to specify ag, a1, az, ag
and the value at spacelike points h(x;),i=1,2,3, ..., where
x; is real, the determinantal equation reads

I ap a1 az as h(l’l) h(l’z)
a 1 0 0 O 1 1
ai 01 0 O T )
a2 0 0 1 O x? x3
a3 0 0 0 1 x3 x5

h(zy) 1 zp 22 23 (1—-2H)7! (1—zymp) !

h(za) 1 z9 23 3 (1—mox1)™ ! (1—23)7!

=0. (27)

In the above merely retaining the first two rows and
columns gives the first bound of Palmer, given in the intro-
duction, while retaining the first three rows and columns
yields the second of Palmer’s bounds. Raina and Singh [11]
use the value of F;(0)=1 and 7, to obtain the lower
bound to a, (77 ~). This amounts to dropping the rows

and columns corresponding to as and ag in (27), which are
related to the expansion coefficients ¢ and d. Instead, pro-
viding an input to I in (27) gives us an allowed region in
the c—d plane. Dropping the row and column correspond-
ing to az would result in determining an allowed region for
c alone, which we pursue in the next section for purposes of
illustration.

In the next subsection, we provide a discussion on the
present day experimental information that is utilized in
our study. This information spans an impressive range of
energies, viz. |t|. While in principle there is no limit to the
number of constraints, in practice the uncertainties in the
experimental determination and sensitivity of the determi-
nantal equation limits this number. The reason for such re-
strictions is the extreme sensitivity of the matrices to these
experimental uncertainties as their dimensions increase.
This sensitivity is particularly severe for small values of |¢].
As aresult, at such values we are able to implement at most
two constraints, while data from higher energies allow us
to implement up to three constraints. However, the data
from smaller values of |t| provide more stringent bounds for
a fixed number of constraints. Thus we see a fairly complex
interplay between the energy regime that we can use and
the number of constraints we are able to implement.

2.1 Spacelike data

We will begin with the data in the spacelike region that
was used in the work of Raina and Singh [11], that came
from measurements in the seventies. We shall refer to these
as the Brown data and Bebek data, respectively. The data
we use from these sets are given in Tables 1 and 2. The ta-
bles also list the values of z(t) = z(t), which is the map
from the t-plane to the disc |z| <1 (x(¢) lies in the range
[—1 < x(t) <0]), for the chosen data points and the corres-
ponding value of h(z) = h(z) (refer to (10)). To make our
notation clear, we refer to the data points corresponding to
a particular |t| as 1, x2 and so on, in the ascending order
of magnitude of |¢|. The tables also show the experimental
errors in the data.

More recent data come from four sources. The first of
these are in [13], which are from a Fermilab experiment

Table 1. Spacelike data from Bebek et al. [10]

t(—Q?) [GeV?] Fr(2) z(t)  h(z) x107°
1 —0.620 0.453+£0.014 —0.499 3.057
2 —1.216 0.292+£0.026 —0.606 2.035
3 —1.712 0.246£0.017 —0.655 1.716

Table 2. Spacelike data from Brown et al. [9]

t(—Q?) [GeV?] Fr(t) z(t)  h(z) x107°
1 —0.294 0.606 £0.028 —0.372 3.775
2 —0.795 0.380+£0.013 —0.540 2.608
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Table 3. Spacelike data from Tadevosyan et al. [16]

t(—Q?) [GeV?] Fr(t) z(t)  |h(z) x107°
1 —0.600 0.433£0.017 —0.494 2.915
2 —1.000 0.312+£0.016 —0.576 2.163
3 —1.600 0.233£0.014 —0.645 1.626
Table 4. Spacelike data from Amendolia et al. [15]
t(—Q?) [GeV?] Fr(t) z(t)  h(z) x107°
1 —0.131 0.807£0.015 —0.242 4.454
2 —0.163 0.750£0.016 —0.275 4.286

(F1). Here the range is 0.03 GeV? < —t < 0.07 GeV2. Even
at the high end, we are way below the lowest energy of
Brown. The next set of data come from another Fermi lab
experiment (F2) [14], covering the range of 0.037 GeV? <
—1 <0.094GeV2. The CERN NAT7 experiment provides
very accurate data [15] in the range 0.014 GeV? < —t <
0.26 GeV? (by Amendolia et al.). There is an overlap re-
gion between this last set and the Brown data and the two
are consistent. The final data we use come from the JLab
experiments (Tadevosyan et al. [16]).

In our study we choose to work with recent data from
Amendolia et al. [15], which cover both the low and in-
termediate energy range (note that the data from [13, 14]
cover a smaller energy range; hence our choice) and the
data from the JLab experiments (Tadevosyan et al. [16]),
which cover a higher range of |¢|. Using really small |¢|
values leads to numerical instabilities as the entries in the
determinant (27) become small.

Tables 1-4 show the data that are used in our analy-
sis to constrain the expansion coefficients ¢ and d of the
form factor Fy(t). The data from various experiments are
chosen so as to give reliable numerical results. We find the
data in the lower |¢| to constrain the expansion coefficients
better but we cannot include more than two spacelike con-
straints; while the higher |¢| region gives a weaker bound,
which can be improved by increasing the number of space-
like constraints.

3 Results

In our results, we use I = 75 x 1072 as input [5]. This value
is certainly greater than a recent estimate for the hadronic
contribution to a}*! = 69.2 x 10~ [3]. The pionic contri-
bution is expected to be around 70% of the total hadronic
value. Our value for I gives a conservative upper bound to
the pionic contribution to a,.

We begin by constraining only the expansion coefficient
¢, which amounts to dropping out the row and column cor-
responding to az in (27). We determine the bounds on ¢
in stages, starting with only the pion charge radius r, and
the normalization of F(t) at ¢ =0 (i.e., no spacelike con-
straints) and then incorporate spacelike constraints succes-

L Brown Tadevosyan i

T
T
!

i Amendiola | Bebek

\ \ | I \ | |
0 1 2 3 0 1 2 3
number of spacelike constraints  number of spacelike constraints

Fig. 1. Constraints on c¢ starting with just information on
Fr(0) =1 and 72 and incorporating spacelike constraints. No-
tice that the allowed values of ¢ decrease as we include more
spacelike constraints

sively. The results are shown in Fig. 1, where we have used
data from Tables 1-4. For any data set, we start with the
smallest value of |¢| for one spacelike constraint and include
more constraints in increasing magnitude of |¢|. All the
data sets show the trend that inclusion of more spacelike
constraints in this manner improves the bounds on c. The
largest range for ¢ in units of GeV~* is obtained when no
spacelike constraints are used. This agrees with the result
of Caprini (Fig. 1 in [5]). Note, however, that for data from
larger values of |t|, the bound on ¢ is significantly weaker
compared to data from smaller values of |¢| for a fixed num-
ber of spacelike constraints.

It is worth investigating the sensitivity of the bounds to
the errors in the data. The Brown data shift the bounds
on ¢ to negative values when two spacelike constraints are
used. This shift is sensitive to the error bounds on F(¢). If
we use as input Fy(t1)+ 0.028 (Table 2) for the first con-
straint and Fy (t2) —0.013 for the second constraint, then

I I
A =
space | e o

oot e -

S
o 0r- n

o
1000 Jstaos"" -
| | | | | | |

-40 -20 0 20 40 60 80
c [GeV'4]

Fig. 2. Constraints on c and d using the normalization Fr(0) =
1 and the pion charge radius r
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the upper bound on c is positive. Here, ¢; and t5 repre-
sent the first and second data point respectively in Table 2.
We present a further sensitivity analysis later in this sec-
tion. Similarly for the data from Amendolia et al. [15], we
see that one spacelike constraint can be incorporated using
central values for Fj(t); but varying this input over the
error bounds given in Table 4, we can use up to two con-
straints (not shown here). Unless otherwise specified, all
results presented in this section use the central values of
the form factor data given in Tables 1-4.

Including constraints from as results in a relationship
between the expansion coefficients ¢ and d, which we shall
now explore. Figure 2 shows the allowed region in the c—d
plane using only the normalization condition on Fy (t) and
the value of r;. Analogous to the study of the bounds on
¢, we can include spacelike constraints to impose stringent

bounds on the expansion coefficients ¢ and d, that are re-
flected by smaller allowed regions in the c—d plane. Figure 3
shows the variation in the bounds on ¢ and d for one space-
like constraint, where data from a different [¢| region are
used. In the figure, h(z1) is the value of h(x) as defined
in (10), corresponding to the smallest value of ¢ in each
data set (refer to Tables 1-4). Similarly h(z2) is the con-
straint at a higher [¢| value, taken in the ascending order
of magnitude. It may readily be observed that the most
stringent bounds are obtained when data from the small-
est values of |t| are used, and they improve as the number
of constraints are increased, as noted earlier.

Figure 4 (as well as 5) shows that increasing the num-
ber of spacelike constraints improves the bounds on the
expansion coefficients ¢ and d. We observe that the allowed
range for ¢ corresponds to that in Fig. 1. Using the cen-

Tadevosyan

Fig. 3. Constraints on ¢ and d using one
spacelike constraint. Here we start with the
smallest |t| value and the corresponding
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value of h(z) = h(z1) and study the varia-
tion of the bounds on c and d as we use data
from the higher |¢| region
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Znspace: '}/ E
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I [
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space |
L 4 _
L ':/ A 4
- ]
- s _
f Tadevosyan; Fig. 4. Constraints on ¢ and d as the
1‘ 0 ‘ (‘) ‘ 1‘0 number of spacelike constraints are in-
. " creased. Here the spacelike data are taken
c[GeV ] from [10, 16]
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tral values tabulated in Tables 1-4, we see that we are able
to use up to three spacelike constraint with the data from
Bebek et al. [10] and the recent data from Tadevosyan et
al. [16], while we are able to incorporate only two space-
like constraints with the data from Brown et al. [9] and one
with the data from Amendolia et al. [15]. The best esti-
mate for the bounds on the Taylor coefficient ¢ and d is
obtained for the data from Bebek et al. [10]. But varying
the Bebek data within the error bounds, we see that there
is overlap with the bounds obtained with the data from
Tadevosyan et al. [16], as seen in Fig. 6. In Fig. 6, the label
“max” refers to the data taken from Tables 1 and 3 with the
corresponding error bounds added, i.e. at the upper limit of
the error bound, “central” refers to the central values and
“min” refers to central value minus the error bound, i.e.,
the lower limit of the error bound. We see that an overlap
between the bounds obtained from the different data set

occurs when the data are close to the upper error bound.
In fact at the upper error bound, the data from Tadevosyan
et al. give better bounds on the expansion coefficients com-
pared to the data from Bebek et al. At the central value of
F,(t), the data from Bebek et al. do better, while at the
lower end, the data from Bebek et al., no longer yield sta-
ble results, while the data from Tadevosyan et al. still give
reasonable bounds. We find that despite small differences
in the allowed regions, the fact that the allowed regions are
essentially the same offers an important consistency check
on the determinations of the form factor by each of the
experiments.

As seen from our results so far, the bounds on the Tay-
lor coefficients vary due to the errors in the data presented
in Tables 1-4; hence it is important to examine the sensi-
tivity of our results to the inputs. We have made a system-
atic study of the sensitivity by varying
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Fig. 7. Variations in the bounds on ¢ and d when the value
of rr is changed. This has been carried out for one spacelike
constraint for the data set by Amandolia et al. [15]

400 : :

I ° 1=60x10" 1

200~ ° 1=75x10" N
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Fig. 8. Variations in the bounds on ¢ and d when the value of
I is changed. This has been carried out for one spacelike con-
straint for the data set by Amandolia et al. [15]

(a) the input value of 7,

(b) the input value of I, and

(c) varying the experimental determinations of Fj(t)
within their quoted errors, and in each instance keep-
ing all other inputs fixed.

Variations in the bounds on ¢ and d for one space-
like constraint from [10,15], when the value of r, is var-
ied within the error bounds quoted therein, are shown
in Fig. 7. We see that the bounds do not vary much as r is
varied within the allowed errors of a few percent. Figure 8
shows the variations in the bounds of ¢ and d as the value

400
r o central b
200 o max .
| * min B
% jAmendolia i
O 200} .
= I ]
-400 - _ .
600~ | .
30 20 -10 0 10 20
500 .
>0 .
O
<) i
o
-500 .
-40 20 0 20 40
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Fig. 9. Variations in the bounds on ¢ and d when the data for
Fr(t) from Tables 1 and 4 are varied within their error bounds.
Here “central” refers to the value without the errors and “min”
to the lowest value and “max” to the highest value within the
error bounds. Note that the bounds are more sensitive to the
errors in the data from the small [¢| region

20— |
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9‘ I 4
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Fig. 10. Variations in the bounds on ¢ when the data for Fx (¢)
from Table 4 are varied within their error bounds. The filled cir-
cles and squares refer to the maximum and minimum of the
bounds on ¢ obtained from the first entry in Table 4 and the
open ones correspond to the second entry in the table

of I is changed. Lower I values result in a subspace of the
region allowed for the coefficients at higher I values. We ex-
pect this behavior as our method gives only an allowed re-
gion for the coefficients. This explicitly demonstrates that
as long as the true pionic contribution is lower than the
values we have used, the allowed region lies within the iso-
lated ellipse.
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value and vary the other over the quoted error bounds [10] and
plot the variations in the bounds on c as a function of the con-
straint that is varied
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Fig. 12. Relative errors in the bounds on ¢ with respect to the
central value, for one spacelike constraint as the constraint is
varied over the error bounds for the data sets [15, 16]

Figure 9 shows the variation bounds on ¢ and d for the
data from Amendolia et al. [15] and Bebek et al. [10] for
one spacelike constraint (smallest magnitude of |¢| in Ta-
bles 1 and 4). The data are varied within their experimen-
tal bounds and the results are depicted in Fig. 9. We see
that the bounds on the expansion coefficients are most sen-
sitive to errors in the data from lower |¢|. Having said all
that, it is our view that one may read off reliable ranges for
both ¢ and d in light of this sensitivity analysis. However,
an analogous sensitivity test that we have carried out for
two spacelike constraints for the data from Amendolia et
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al. [15] leads to a complete loss of coherence. This is an
unavoidable numerical difficulty in the determinant that
arises due to the fact that the entries are small and closely
spaced. Therefore we can conclude that for low |¢| informa-
tion we are unable to obtain reliable results for more than
one constraint.

We explore this sensitivity of the bounds to the data
taken from the low |t| region using one spacelike constraint
from [15] and varying this constraint over the given error
bounds (Table 4) and study the corresponding variations
in the bounds on c¢ alone. This is seen in Fig. 10, where
the circles represent the maximum and the squares repre-
sent the minimum of the bounds. The filled symbols stand
for the bounds obtained from the data at lower value of
|t| and the open symbols represent those from the data at
higher value of |¢|. Figure 11 shows similar variations in
the bounds on ¢ when one as well as two spacelike con-
straints (Table 3) for the data taken from [16] are varied
over the error bounds. Note that the data from [16] lie at
a higher |¢| value compared to the data from [15]. When
two spacelike constraints are used, we fix one constraint at
the central value and vary the other over the error bounds
quoted in [16] and plot the maximum and minimum of the
bounds as a function of the constraint that is varied. From
Figs. 10 and 11, we see that data from a lower [t| value
in each set constrain the coefficients better for one space-
like constraint. Also the sensitivity to the error bounds is
greater for a set at lower |t| compared to the set at higher
value of |t|. We also note that two spacelike constraints are
more sensitive to the variations in F(t) compared to one
spacelike constraint, as can be seen in Fig. 11.

Relative errors in the bounds on ¢ as one spacelike con-
straint is varied over the quoted error bounds compared
to the bounds obtained from the central value are shown
in Fig. 12 for the data sets from Amendolia et al. and Tade-
vosyan et al. We see that the relative errors are smaller for
the data from Tadevosyan et al., once again emphasizing
our earlier observation that the sensitivity of the Taylor
coefficients to the errors in the determination of F(t) is
greater for the data from the low [¢| region compared to
those from the high |¢| region.

4 Discussion and conclusions

In this work we have considered the constraints on the pion
electromagnetic form factor coming from present day es-
timates of the pionic contributions to the muon anomaly,
and from spacelike data that are available over a fairly ex-
tended kinematic regime. We have adopted the framework
of Raina and Singh and have extended it to obtain con-
straints on ¢ and d, the expansion coefficients sub-leading
to the charge radius of the pion. We have used data avail-
able since the 1970’s (also used in [11]) and more recent
data, which span significantly lower values of ||, as well as
very recent data coming from Tadevosyan et al., which are
at higher |¢| values, which lie in the range of Bebek et al.
As mentioned in the introduction, Caprini [5] has used
timelike data to obtain constraints on the Taylor coeffi-
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cients. By systematically considering the inclusion of only
the phase, the ellipse with no constraints was found to
shrink considerably, using as an observable the QCD po-
larization function (see Figs.1 and 2 in [5]). This analy-
sis employs an optimal technique, resulting in an integral
equation of the Fredholm type that was solved numerically.
The ellipse was found to shrink even further when both the
phase as well as the modulus information were used even
though the technique was non-optimal (see Fig. 3 in [5]).
Questions remain about its validity due to certain mathe-
matical difficulties, as discussed by Caprini.

The best estimates for the bounds on ¢ and d are ob-
tained using the data from Bebek et al. [10] for three space-
like constraints. In Fig. 13, we compare our best result with
those obtained by Caprini using only the phase from the
timelike region. Using spacelike data we get the follow-
ing range for the expansion coefficients: —1 GeV~* < ¢ <
11 GeV—*and —132 GeV 5 < d <220 GeV 5. On the other
hand Caprini has a range of [—14 GeV~*, 44 GeV ] and
[—236 GeV ¢, 594 GeV 5] for ¢ and d respectively using
only the phase of the timelike data. It is interesting to
note that the overlap region between the two determina-
tions, ours using spacelike data and the muon anomaly
and Caprini’s using the phase of timelike data and the
QCD polarization observable, accommodates comfortably
the value of ¢ from chiral perturbation theory. We note here
that similar bounds obtained using the central values of
the Tadevosyan data (Table 3) using three spacelike con-
straints do not accommodate the value of ¢ obtained from
chiral perturbation theory, but varying the data at the up-
per end of the error bound, as in Fig. 6, the allowed region
does include this value.

Our conclusions are that the constraints are weaker
than those obtained by Caprini using both phase and mod-
ulus of the data from the timelike region (see Fig. 3 in [5]),
while they are more stringent than those obtained with
only the phase of the timelike data. Here we note again that
the latter of these treatments is rigorous and the results
may be taken as reliable. On the other hand, the results ob-
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Fig. 13. Comparing our best ellipse obtained for three space-
like constraints using data from Bebek et al. [10] (symbol) with
the result obtained using the phase of the form factor in the
timelike region (see Fig. 2 in [5])
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tained using both the modulus and phase while appearing
more stringent are on a less rigorous footing, due to inher-
ent mathematical difficulties as noted in [5].

We have also carried out a sensitivity analysis by vary-
ing the estimate for the pionic contribution over a signifi-
cant range, varying the charge radius over its presently
known errors, and also by varying the experimental data
that we use over its errors, for the values of [¢| that we
have chosen. Our conclusions are that in the small |¢| re-
gion, the system is very sensitive and as a result, we have
been unable to implement anything more than one space-
like constraint. For larger values, we are able to include two
and even three constraints.

Of related interest is the extreme sensitivity of the sys-
tem when bounds are being derived on the muon anomaly
from the spacelike data, as recognized earlier by Pantea
and Raszillier [17]. The issue was of some significance be-
cause several spacelike constraints were being used to ob-
tain these bounds. Our circumstances are somewhat miti-
gated by the fact that we are using a significantly smaller
number of constraints, as the determinantal equations we
are solving are already of rather large dimensions. By
studying the sensitivity of the bounds, we are confident
that our results remain stable.

It is conceivable that as the data improve one may ob-
tain better constraints on ¢ and d, where it is numerically
feasible; that can then be used as input for high precision,
self-consistent determinations of the form factor. We also
note at this point that our work takes into account only
the information present in the spacelike region. It would
be worthwhile to properly formulate the problem so that
the information available in the timelike region could be in-
corporated together with a comprehensive error analysis.
A theory of error functionals has been developed by Raina
and Singh [18] in the context of finding a lower bound for
the muon anomaly, which could in principle be extended
for the problem at hand, which is beyond the scope of
this work. Therefore, future investigations could combine
highly accurate phase and modulus timelike information
coming from recent experiments and the techniques de-
veloped by Caprini for the phase problem, together with
a suitable extension of the error functional method, to pro-
duce stringent constraints on ¢ and d
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